资源类型

期刊论文 1936

会议视频 30

会议信息 4

年份

2024 3

2023 241

2022 246

2021 262

2020 148

2019 90

2018 68

2017 97

2016 63

2015 88

2014 76

2013 88

2012 54

2011 57

2010 76

2009 57

2008 61

2007 84

2006 11

2005 10

展开 ︾

关键词

SARS-CoV-2 7

碳中和 7

微波散射计 5

COVID-19 4

Cu(In 4

微波辐射计 4

氢能 4

节能减排 4

2019 3

2型糖尿病 3

GPS 3

Ga)Se2 3

HY-2 3

HY-2 卫星 3

代谢与免疫 3

光催化 3

工程管理 3

核能 3

能源 3

展开 ︾

检索范围:

排序: 展示方式:

Preparation of ceria-zirconia solid solution with enhanced oxygen storage capacity and redox performance

Lijing MENG, Licheng LIU, Xuehong ZI, Hongxing DAI, Hong HE, Zhen ZHAO, Xinping WANG,

《环境科学与工程前沿(英文)》 2010年 第4卷 第2期   页码 164-171 doi: 10.1007/s11783-010-0019-2

摘要: A new method called ultrasonic-assisted membrane reaction (UAMR) was reported for the fabrication of ceria-zirconia solid solution. A series of ceria-zirconia solid solutions with different Ce/Zr molar ratios were prepared by the UAMR method and characterized by X-ray diffraction (XRD), N adsorption, hydrogen temperature-programmed reduction (H-TPR), scanning electron microscope (SEM), and transmission electron microscopy (TEM) techniques. The UAMR method proved to be superior, especially when the Ce/Zr molar ratio was lower than 1, in fabricating ceria-zirconia solid solutions with large BET surface area, high oxygen storage capacity (OSC), and low reduction temperature.

关键词: membrane reaction     ceria-zirconia     Ce/Zr molar ratio     solid solution     hydrogen temperature-programmed reduction (H2-TPR)    

The opportunity of membrane technology for hydrogen purification in the power to hydrogen (P2H) roadmap

Hiep Thuan Lu, Wen Li, Ehsan Soroodan Miandoab, Shinji Kanehashi, Guoping Hu

《化学科学与工程前沿(英文)》 2021年 第15卷 第3期   页码 464-482 doi: 10.1007/s11705-020-1983-0

摘要: The global energy market is in a transition towards low carbon fuel systems to ensure the sustainable development of our society and economy. This can be achieved by converting the surplus renewable energy into hydrogen gas. The injection of hydrogen (≤10% v/v) in the existing natural gas pipelines is demonstrated to have negligible effects on the pipelines and is a promising solution for hydrogen transportation and storage if the end-user purification technologies for hydrogen recovery from hydrogen enriched natural gas (HENG) are in place. In this review, promising membrane technologies for hydrogen separation is revisited and presented. Dense metallic membranes are highlighted with the ability of producing 99.9999999% (v/v) purity hydrogen product. However, high operating temperature (≥300 °C) incurs high energy penalty, thus, limits its application to hydrogen purification in the power to hydrogen roadmap. Polymeric membranes are a promising candidate for hydrogen separation with its commercial readiness. However, further investigation in the enhancement of H /CH selectivity is crucial to improve the separation performance. The potential impacts of impurities in HENG on membrane performance are also discussed. The research and development outlook are presented, highlighting the essence of upscaling the membrane separation processes and the integration of membrane technology with pressure swing adsorption technology.

关键词: power to hydrogen     membrane technology     hydrogen     energy    

Development of an H reduction and moderate oxidation method for 3,5-dimethylpyridine hydrogenation in

《化学科学与工程前沿(英文)》 2022年 第16卷 第12期   页码 1807-1817 doi: 10.1007/s11705-022-2243-2

摘要: The Ru/C catalyst prepared by impregnation method was used for hydrogenation of 3,5-dimethylpyridine in a trickle bed reactor. Under the same reduction conditions (300 °C in H2), the catalytic activity of the non-in-situ reduced Ru/C-n catalyst was higher than that of the in-situ reduced Ru/C-y catalyst. Therefore, an in-situ H2 reduction and moderate oxidation method was developed to increase the catalyst activity. Moreover, the influence of oxidation temperature on the developed method was investigated. The catalysts were characterized by Brunauer–Emmett–Teller method, hydrogen temperature programmed reduction H2-TPR, hydrogen temperature-programmed dispersion (H2-TPD), X-ray diffraction, energy dispersive spectroscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, O2 chemisorption and oxygen temperature-programmed dispersion (O2-TPD) analyses. The results showed that there existed an optimal Ru/RuOx ratio for the catalyst, and the highest 3,5-dimethylpyridine conversion was obtained for the Ru/C-i1 catalyst prepared by in-situ H2 reduction and moderate oxidation (oxidized at 100 °C). Excessive oxidation (200 °C) resulted in a significant decrease in the Ru/RuOx ratio of the in-situ H2 reduction and moderate oxidized Ru/C-i2 catalyst, the interaction between RuOx species and the support changed, and the hard-to-reduce RuOx species was formed, leading to a significant decrease in catalyst activity. The developed in-situ H2 reduction and moderate oxidation method eliminated the step of the non-in-situ reduction of catalyst outside the trickle bed reactor.

关键词: Ru/C catalyst     in-situ H2 reduction and moderate oxidation     in-situ reduction     non-in-situ reduction     hydrogenation of 3     5-dimethylpyridine    

Impacts of CO2 and H2S on the risk of hydrate formation during pipeline transport of natural gas

Solomon A. Aromada, Bjørn Kvamme

《化学科学与工程前沿(英文)》 2019年 第13卷 第3期   页码 616-627 doi: 10.1007/s11705-019-1795-2

摘要: Evaluation of maximum content of water in natural gas before water condenses out at a given temperature and pressure is the initial step in hydrate risk analysis during pipeline transport of natural gas. The impacts of CO and H S in natural gas on the maximum mole-fractions of water that can be tolerated during pipeline transport without the risk of hydrate nucleation has been studied using our novel thermodynamic scheme. Troll gas from the North Sea is used as a reference case, it contains very negligible amount of CO and no H S. Varying mole-fractions of CO and H S were introduced into the Troll gas, and the effects these inorganic impurities on the water tolerance of the system were evaluated. It is observed that CO does not cause any distinguishable impact on water tolerance of the system, but H S does. Water tolerance decreases with increase in concentration of H S. The impact of ethane on the system was also investigated. The maximum mole-fraction of water permitted in the gas to ensure prevention of hydrate formation also decreases with increase in the concentration of C H like H S. H S has the most impact, it tolerates the least amount of water among the components studied.

关键词: hydrate     hydrogen Sulphide     CO2     dew point     pipeline    

PSS sorbents for removing trace hydrogen sulfide in methane

Limei ZHONG, Li ZHOU

《化学科学与工程前沿(英文)》 2011年 第5卷 第3期   页码 339-342 doi: 10.1007/s11705-010-0569-7

摘要: Sorbents of the pressure swing sorption process (PSS) to remove trace amount of H S (190 ppm) contained in methane were experimentally studied. The sorbents consist of adsorbent carrier (silica gel or activated carbon) and absorbent which spreads outside the carrier granules’ pores (triethanolamine, TEA or -methyl-2-pyrrolidone, NMP). The results of breakthrough and regeneration tests show that silica gel is more suitable to be the carrier than activated carbon and TEA is more suitable to be the absorbent than NMP. The loaded absorbent could enlarge the sorption capacity of H S considerably. And the BET tests indicate that the absorbent deposits on the surface of the carrier’s pores and can reduce the mesopores’ size and block the micropores.

关键词: pressure swing sorption     H2S     methane     carrier     absorbent    

THAI experimental research on hydrogen risk and source term related safety systems

《能源前沿(英文)》 2021年 第15卷 第4期   页码 887-915 doi: 10.1007/s11708-021-0789-1

摘要: In the defense-in-depth concept employed for the safety of nuclear installations, maintaining integrity of containment as the last barrier is of high importance to limit the release of radioactivity to the environment in case of a severe accident. The active and passive safety systems implemented in containments of light water reactors (LWRs) are designed to limit the consequences of such accidents. Assessing the performance and reliability of such systems under accident conditions is critical to the safety of nuclear installations.

关键词: severe accident     containment     safety     mitigation     H2 risk     source term    

从氢原子质子化模型计算H2+的结构参数

陈景

《中国工程科学》 2004年 第6卷 第11期   页码 29-32

摘要:

对氢分子离子提出了氢原子质子化的结构模型,从微观时标和宏观时标分析了H2+中库仑吸引力和两核排斥力的动态平衡,认为氢原子畸变后的电子云在两核中点产生e/8的电荷重心时可以束缚住一个裸质子;据此推导出键长、键能及力常数的计算公式;使用原子单位分别获得Re=2 au,De=0.109 735 au,k=0.109

关键词: 氢分子离子     键长     键能     力常数    

Study on tribological and electrochemistry properties of metal materials in H2O2 solutions

Chengqing YUAN, Li YU, Jian LI, Xinping YAN

《机械工程前沿(英文)》 2012年 第7卷 第1期   页码 93-98 doi: 10.1007/s11465-012-0313-8

摘要:

Hydrogen peroxide (H2O2) is a kind of ideal green propellant. It is crucial to study the wear behavior and failure modes of the metal materials under the strong oxidizing environment of H2O2. This study aims to investigate the wear of rubbing pairs of 2Cr13 stainless steel against 1045 metal in H2O2 solutions, which has a great effect on wear, the decomposition and damage mechanism of materials. The comparison analysis of the friction coefficients, wear mass loss, worn surface topographies and current densities was conducted under different concentrations of H2O2 solutions. There were significant differences in the tribological and electrochemistry properties of the rubbing pairs in different H2O2 solutions.

关键词: hydrogen peroxide     wear     corrosion     wear mechanism    

Thermodynamic analysis of steam reforming of glycerol for hydrogen production at atmospheric pressure

Ammaru Ismaila, Xueli Chen, Xin Gao, Xiaolei Fan

《化学科学与工程前沿(英文)》 2021年 第15卷 第1期   页码 60-71 doi: 10.1007/s11705-020-1975-0

摘要: Thermodynamic chemical equilibrium analysis of steam reforming of glycerol (SRG) for selective hydrogen production was performed based on the Gibbs free energy minimisation method. The ideal SRG reaction (C H O +3H O→3CO +7H ) and a comprehensive set of side reactions during SRG are considered for the formation of a wide range of products. Specifically, this work focused on the analysis of formation of H CO , CO and CH in the gas phase and determination of the carbon free region in SRG under the conditions at atmospheric pressure, 600€K–1100€K and 1.013 × 10 –1.013 × 10 Pa with the steam-to-glycerol feed ratios (SGFR) of 1:5–10. The reaction conditions which favoured SRG for H production with minimum coke formation were identifies as: atmospheric pressure, temperatures of 900€K–1050€K and SGFR of 10:1. The influence of using the inert carrier gas (i.e., N ) in SRG was studied as well at atmospheric pressure. Although the presence of N in the stream decreased the partial pressure of reactants, it was beneficial to improve the equilibrium yield of H . Under both conditions of SRG (with/without inert gas), the CH production is minimised, and carbon formation was thermodynamically unfavoured at steam rich conditions of SGFR>5:1.

关键词: steam reforming of glycerol     H2     N2     carbon deposition     thermodynamic analysis     Gibbs free energy minimisation    

Metal-organic framework loaded manganese oxides as efficient catalysts for low-temperature selectivecatalytic reduction of NO with NH

Minhua Zhang, Baojuan Huang, Haoxi Jiang, Yifei Chen

《化学科学与工程前沿(英文)》 2017年 第11卷 第4期   页码 594-602 doi: 10.1007/s11705-017-1668-5

摘要: A mild deposition method was used to fabricate Mn-based catalysts on a UiO-66 carrier for the selective catalytic reduction of NO by NH (NH -SCR). The catalyst with 8.5 wt-% MnO loading had the highest catalytic activity for NH -SCR with a wide temperature window (100–290 °C) for 90% NO conversion. Characterization of the prepared MnO /UiO-66 catalysts showed that the catalysts had the crystal structure and porosity of the UiO-66 carrier and that the manganese particles were well-distributed on the surface of the catalyst. X-ray photoelectron spectroscopy analysis showed that there are strong interactions between the MnO and the Zr oxide secondary building units of the UiO-66 which has a positive effect on the catalytic activity. The 8.5 wt-% MnO catalyst maintained excellent activity during a 24-h stability test and exhibited good resistance to SO poisoning.

关键词: metal-organic framework     selective catalytic reduction     manganese oxides     deNOx     SO2 resistance    

encapsulating M(Co, Fe)-Ni alloy for electrochemical production of syngas with potential-independent CO/H

《化学科学与工程前沿(英文)》 2022年 第16卷 第4期   页码 498-510 doi: 10.1007/s11705-021-2082-6

摘要: The electrochemical conversion of CO2-H2O into CO-H2 using renewable energy is a promising technique for clean syngas production. Low-cost electrocatalysts to produce tunable syngas with a potential-independent CO/H2 ratio are highly desired. Herein, a series of N-doped carbon nanotubes encapsulating binary alloy nanoparticles (MxNi-NCNT, M= Fe, Co) were successfully fabricated through the co-pyrolysis of melamine and metal precursors. The MxNi-NCNT samples exhibited bamboo-like nanotubular structures with a large specific surface area and high degree of graphitization. Their electrocatalytic performance for syngas production can be tuned by changing the alloy compositions and modifying the electronic structure of the carbon nanotube through the encapsulated metal nanoparticles. Consequently, syngas with a wide range of CO/H2 ratios, from 0.5:1 to 3.4:1, can be produced on MxNi-NCNT. More importantly, stable CO/H2 ratios of 2:1 and 1.5:1, corresponding to the ratio to produce biofuels by syngas fermentation, could be realized on Co1Ni-NCNT and Co2Ni-NCNT, respectively, over a potential window of –0.8 to –1.2 V versus the reversible hydrogen electrode. Our work provides an approach to develop low-cost and potential-independent electrocatalysts to effectively produce syngas with an adjustable CO/H2 ratio from electrochemical CO2 reduction.

关键词: electrochemical reduction of CO2     syngas     N-doped carbon nanotubes     encapsulated alloy nanoparticles     CO/H2 ratio    

Highly effective visible-photocatalytic hydrogen evolution and simultaneous organic pollutant degradation

《环境科学与工程前沿(英文)》 2022年 第16卷 第10期 doi: 10.1007/s11783-022-1566-z

摘要:

● An urchin-like OMS/ZIS composite was fabricated by a facile solvothermal method.

关键词: Dual-functional photocatalysts     Oxygen-doped MoS2/ZnIn2S4     H2 evolution     Organic pollutant    

Chemisorption solid materials for hydrogen storage near ambient temperature: a review

Yiheng ZHANG, Shaofei WU, Liwei WANG, Xuefeng ZHANG

《能源前沿(英文)》 2023年 第17卷 第1期   页码 72-101 doi: 10.1007/s11708-022-0835-7

摘要: Solid chemisorption technologies for hydrogen storage, especially high-efficiency hydrogen storage of fuel cells in near ambient temperature zone defined from −20 to 100°C, have a great application potential for realizing the global goal of carbon dioxide emission reduction and vision of carbon neutrality. However, there are several challenges to be solved at near ambient temperature, i.e., unclear hydrogen storage mechanism, low sorption capacity, poor sorption kinetics, and complicated synthetic procedures. In this review, the characteristics and modification methods of chemisorption hydrogen storage materials at near ambient temperature are discussed. The interaction between hydrogen and materials is analyzed, including the microscopic, thermodynamic, and mechanical properties. Based on the classification of hydrogen storage metals, the operation temperature zone and temperature shifting methods are discussed. A series of modification and reprocessing methods are summarized, including preparation, synthesis, simulation, and experimental analysis. Finally, perspectives on advanced solid chemisorption materials promising for efficient and scalable hydrogen storage systems are provided.

关键词: hydrogen storage capacity     chemisorption     near-ambient-temperature     modification methods     alloy hydrides    

anchored on porphyrinic triazine-based frameworks with excellent biocompatibility for conversion of CO in H-mediated

《化学科学与工程前沿(英文)》 2022年 第16卷 第12期   页码 1761-1771 doi: 10.1007/s11705-022-2195-6

摘要: Microbial electrosynthesis is a promising alternative to directly convert CO2 into long-chain compounds by coupling inorganic electrocatalysis with biosynthetic systems. However, problems arose that the conventional electrocatalysts for hydrogen evolution may produce extensive by-products of reactive oxygen species and cause severe metal leaching, both of which induce strong toxicity toward microorganisms. Moreover, poor stability of electrocatalysts cannot be qualified for long-term operation. These problems may result in poor biocompatibility between electrocatalysts and microorganisms. To solve the bottleneck problem, Co anchored on porphyrinic triazine-based frameworks was synthesized as the electrocatalyst for hydrogen evolution and further coupled with Cupriavidus necator H16. It showed high selectivity for a four-electron pathway of oxygen reduction reaction and low production of reactive oxygen species, owing to the synergistic effect of Co–Nx modulating the charge distribution and adsorption energy of intermediates. Additionally, low metal leaching and excellent stability were observed, which may be attributed to low content of Co and the stabilizing effect of metalloporphyrins. Hence, the electrocatalyst exhibited excellent biocompatibility. Finally, the microbial electrosynthesis system equipped with the electrocatalyst successfully converted CO2 to poly-β-hydroxybutyrate. This work drew up a novel strategy for enhancing the biocompatibility of electrocatalysts in microbial electrosynthesis system.

关键词: microbial electrosynthesis     hydrogen evolution reaction     metalloporphyrins     biocompatibility     CO2 conversion    

H2 对Pt-Ba-Ce /γ-Al2O3 催化剂NOx 存储和还原机理的影响研究 Article

王攀, 裔静, 孙川, 罗鹏, 雷利利

《工程(英文)》 2019年 第5卷 第3期   页码 568-575 doi: 10.1016/j.eng.2019.02.005

摘要:

本研究采用浸渍法制备了Pt-Ba-Ce/γ-Al2O3催化剂,利用实验评价了H2 对NSR(NOx storage and reduction)催化剂存储和还原机理的影响,并采用综合表征技术研究了Pt-Ba-Ce /γ-Al2O32O3 上,X 射线光电子能谱(XPS)检测到Ce3+ 和Ce4+ 之间的差异,Ce3+ 和Ce4+ 促进了活性氧在催化剂上的迁移。在NOx 吸附和脱附循环实验中,随着H2暴露时间(30 s、45 s 和60 s)延长,NOx 的存储效率和转化率增加适当增加H2量加速了硝酸盐或亚硝酸盐的分解,有利于NOx 存储-还原,并促进了下一循环NSR吸附位点的再生。

关键词: Pt–Ba–Ce/γ-Al2O3 催化剂,物理化学性质,NOx存储和还原,NOx 排放,H2 还原剂    

标题 作者 时间 类型 操作

Preparation of ceria-zirconia solid solution with enhanced oxygen storage capacity and redox performance

Lijing MENG, Licheng LIU, Xuehong ZI, Hongxing DAI, Hong HE, Zhen ZHAO, Xinping WANG,

期刊论文

The opportunity of membrane technology for hydrogen purification in the power to hydrogen (P2H) roadmap

Hiep Thuan Lu, Wen Li, Ehsan Soroodan Miandoab, Shinji Kanehashi, Guoping Hu

期刊论文

Development of an H reduction and moderate oxidation method for 3,5-dimethylpyridine hydrogenation in

期刊论文

Impacts of CO2 and H2S on the risk of hydrate formation during pipeline transport of natural gas

Solomon A. Aromada, Bjørn Kvamme

期刊论文

PSS sorbents for removing trace hydrogen sulfide in methane

Limei ZHONG, Li ZHOU

期刊论文

THAI experimental research on hydrogen risk and source term related safety systems

期刊论文

从氢原子质子化模型计算H2+的结构参数

陈景

期刊论文

Study on tribological and electrochemistry properties of metal materials in H2O2 solutions

Chengqing YUAN, Li YU, Jian LI, Xinping YAN

期刊论文

Thermodynamic analysis of steam reforming of glycerol for hydrogen production at atmospheric pressure

Ammaru Ismaila, Xueli Chen, Xin Gao, Xiaolei Fan

期刊论文

Metal-organic framework loaded manganese oxides as efficient catalysts for low-temperature selectivecatalytic reduction of NO with NH

Minhua Zhang, Baojuan Huang, Haoxi Jiang, Yifei Chen

期刊论文

encapsulating M(Co, Fe)-Ni alloy for electrochemical production of syngas with potential-independent CO/H

期刊论文

Highly effective visible-photocatalytic hydrogen evolution and simultaneous organic pollutant degradation

期刊论文

Chemisorption solid materials for hydrogen storage near ambient temperature: a review

Yiheng ZHANG, Shaofei WU, Liwei WANG, Xuefeng ZHANG

期刊论文

anchored on porphyrinic triazine-based frameworks with excellent biocompatibility for conversion of CO in H-mediated

期刊论文

H2 对Pt-Ba-Ce /γ-Al2O3 催化剂NOx 存储和还原机理的影响研究

王攀, 裔静, 孙川, 罗鹏, 雷利利

期刊论文